138 COMPUTE! Novemoer/December. 1980 Issue 7
FIGURE 1

AIMASH

LINE # LOC CODE LINE

0001 022C *=$0200

0002 0200 «0BJ $8000

0003 0200 H

0004 0200 FAIM 65 TAFPE COPY UTILITY

0005 0200 H

0006 0200 sDRIVE 1 IS INPUT DRIVE

0007 0200 JDRIVE 2 IS OUTPUT DRIVE

9008 0200]

0009 0200 iBY CHRIS FLYNN 8/80

0010 0200 H

0011 0200 H

0012 0200 $AIM A5 MONITOR ROUTINES USED

0013 0200 5

0014 0200 CLR =$ER44

0015 0200 OUTDP =$EEFC

0014 0200 TIBYL =$ENG3

0017 0200 PHXY =$EBYE

9018 0200 BLKOUT =s$F19C

0019 0200 ¥

4020 0200 FAIM 65 RAM LOCATIONS USED

0021 0200 i

0022 0200 TAPIN =$A434

0023 0200 TAPOUT =$A435

0024 0200 BLOCK =%0113

0025 0200 H

0026 0200 sTAPE COPY INITIALIZATION

0027 0200 i

0028 0200 A% 00 COFY LDA #0

0029 0202 8I 34 A4 STA TAPIN $SET DRIVE 1 AS INPUT

0030 0205 8D 15 01 5TA BLOCK fCLEAR BLOCK COUNT

00321 0208 A9 01 LDA #1 FSET DRIVE 2 AS OUTPUT

0032 020A BD 35 A4 STA TAPOUT

0033 020D H

0034 020D #READ A TAFE ELOCK INTD AIM &5 BUFFER

0035 020D 3

00356 020D 20 44 EF READ JSR CLR

0037 0210 A9 53 LBA #’S FINDICATE SEARCHING FOR BLOCK

0038 0212 20 FC EE JSR QUTLF

0039 0215 A2 00 LDX #0

0040 0217 20 53 EDI JSR TIBY1 iREADl A BLOCK

0041 0214 H

0042 0214 FWRITE THE BLOCK FROM THE AIM BUFFER

0043 021A §NOTE: BLKOUT WILL DO A JSR PLXY AND THEN RTS.

0044 0214 FsTHEREFORE» WE FRELOAD RETURN ADDR OM STACK.

0045 021A H

0044 0214 20 44 EB WRITE JSR CLR

0047 0210 A% 57 LpA 3'UW sINDICATE WRITE IN PROGRESS

0048 021F 20 FC EE JSR QUTIF

0049 0222 A0 02 LDY #>READ $FUT RETURN ADDRESS IN YoX

0050 0224 A2 OC LDX 3<READ-1 JHI FART IN Yy LO PART IN X

0051 0224 20 9E EB JSR PHXY iNOW PUT RETURN ADDRESS ON STACK

0052 0229 20 9C F1 JSR BLKOUT iOUTFUT THE BLOCK AND READ NEXT ONE
The listing in Figure 1 shows the assembly than its normal entry point.

language code for the tape copy program. The only The first and last two statements of TOBYTE

tricky part of the program is the JSR to BLKOUT. are:

BLKOUT is really a part of the AIM subroutine JSR PHXY

TOBYTE ($F18B). A problem arises because the ®

tape copy program calls TOBYTE at a point other)

Novemosr/Decenber. 1580 issue 7

COMPUTE!

39

[]

JSR PLXY

RTS
Notice that TOBYTE saves the X and Y registers on
the stack. When TOBYTE is called in the middle,
the X and Y registers do not get saved. So, when
TOBYTE finishes, the JSR PLXY does not pick up
X and Y. Instead, it removes the return address
from the stack. Therefore, the RTS picks up garbage
from the stack and the AIM hangs!

To get around this problem, the tape copy pro-
gram preloads X and Y before calling BLKOUT.
The values loaded into X and Y represent the return
address. X and Y are then stored on the stack. Last-
ly, the JSR to BLKOUT is done.

Figure 1 shows the way X and Y are loaded.
'The most significant byte of (return address - 1) is
placed in Y. The least significant byte of (return ad-
dress - 1) is placed in X. One is subtracted from the
return address in order to mimic the way the 6502
stores return addresses on the stack. If you relocate
this program, you will have to load X and Y with
the appropriate values.

Summary

This article has deseribed a simple tape copy utility
for the AIM 65. I hope that you find it both useful
and easy to use. Q

tavemper/Decemioer. 1980 ssue 7

COMPUTE! 137

AIM 65 Tape
Copy Utility

Christopher J. Flynn

Introduction

If you're an AIM 65 user, you've probably stored
your favorite programs and important data bases on
cassette tape. Have you thought about making
backup copies of your tapes? I didn’t until my tape
recorder ate my only copy of a 1000 line assembly
language program that I was writing.

You may be thinking it is too much trouble to
make backup tapes on the AIM. Each file has to be
loaded into memory and then written back out. If
you have machine language programs, Basic pro-
grams, and text files, then you have to follow three
different load and dump procedures. Machine
language programs are the worst to copy. Sure, it is
very easy to load them into memory. Have you tried
dumping such a program when you've lost the little
picce of paper that had the memory addresses on it?

Well, here is a little 44 byte program that will
make tape copying easy. All you do is put the tape to
be copied in drive 1 and a blank tape in drive 2.
Then, position the tapes and let the program do the
rest. The program will copy any kind of AIM file. It
will even copy multiple input files from the same
tape. So now, none of us should have any excuse for
not having backup copies of our important tapes.

Hardware Required
First of all, I’ll assume that you have an AIM. An
AIM with just 1K of RAM will do fine.

Next, you'll need to attach two cassette
recorders to your AIM. Chances are you already
have one. If nothing else, maybe this article will give
you an excuse to buy a second one. By the way, the
versatility of the AIM definitely improves with the
second recorder.

Finally, you should connect the remote control
circuits to each of the recorders. You should experi-
ment with the setting of GAP ($A409) as described
in the AIM manual. Pick a value of GAP that lets
you record on one device and play back on the other
reliably. I have found that the default value of 808
works well. It only worked, however, after I modified
my recorders (Radio Shack) so that their electronics
would remain on even when the motor was toggled
off.

Tape Copy Procedure
Let’s go through the step by step procedure of copy-
ing a tape.

1. Load the tape copy program into the AIM’s
memory starting at $0200. The program is easily
relocated, but you’ll have to observe the
cautions described in a later section,

2. Place the tape to be copied in drive 1.

This program assumes that drive 1 is used only

in the playback mode.

3. Place a blank tape in drive 2. This program
assumes that drive 2 is used only in the record
mode.

4. Position the tapes.

a. Position the tape in drive 1 to a point just
beyond the leader. Use the “*1"" monitor
command to toggle drive | off.

b. Position the tape in drive 2 to a point about
4 turns beyond the leader. Use the monitor
2" command to toggle drive 2 off.

5. Start the tape copy program.

a. Use the monitor ***”’ command to set the
AIM’s program counter to $0200.

b. Use the monitor *'G’’ command to begin
the program.

6. Watch the AIM display. The display will alter-
nately show an **S"" and a *“W’'. The ‘8"
means that the program is searching for the next
block. The ““W’ means that the program is in
the process of writing a block to drive 2.

7. Hit reset to stop the copy program when a
steady display of “‘S™’ appears without any inter-
vening “‘W'’s.

a. Drive 1 will be on and you can rewind and
remove the input tape.

b. Drive 2 will be off. This allows you ta stack

additional programs or data on the same output

tape. You will have to toggle drive 2 with the

2" command when you are ready to rewind

the output tape.

That's all there is to copying a tape. Notice that at

no time did the AIM ask you “IN =" or

“QUT =". It did not even ask you for the input and

output file names.

By the way, you should probably verily the first
few tape copies that you make just to be sure that the
program works and that GAP is set properly.

How It Works

The Tape copy program makes use of subroutines in
the AIM monitor. Basically, the program reads a
data block from drive 1 (subroutine TIBY1 at
$EDS53) into the AIM’s tape buffer. The data block
is then written from the buffer to drive 2 by an AIM
subroutine beginning at $F19C which I've called
BLKOUT. In between data blocks, the program
writes either an ‘8" or a “W’’ to the AIM display.
This process of reading and writing a block continues
forever or until reset is pushed or the plug is pulled.

